

Small Field Dosimetry and FFF-Beam Technology

Ivo Čáp, CANBERRA-PACKARD s.r.o.

©PTW 2013 | VIII. mezinárodní konterenci, Prague

Contents

1 Small Field Dosimetry

- 2 FFF Beam Technology
- **3** Suitable QA equipment

Dosimetry Protocols

Dosimetry is based on reference field sizes typically (10x10)cm² and air vented ionization chambers in international protocols such as

IAEA 398, AAPM TG-51 or DIN 6800-2

National and international committees are working on dedicated dosimetry protocols for small field dosimetry

Small Field Dosimetry

Considerations

- The field is smaller than approximately (4 x 4)cm²
- The focus is partially hidden by the collimators
- Lateral electron equilibrium is not given in the center of the field

Influence of Detector Size

Gold standard for dose measurements are vented ionization chambers as specified in [IEC60731]*

Advantages: good response in direction, dose rate and energy Disadvantage: size of the active volume

- The volume effect has two disadvantages:
 - a) Large detectors tend to underestimate the central axis dose
 - b) Broadening of measured steep dose gradient in penumbra region

* Medical electrical equipment - Dosimeters with ionization chambers as used in radiotherapy

Volume effect of large ionization chambers

Small field detectors against a Gaussian shaped field of FWHM^{*} (2 x 2)cm²

Volume effect of large ionization chambers

• Each (!) detector will average the dose across its sensitive volume

Volume effect of large ionization chambers

Signal after averaging: The CAX value of the dose is underestimated and the penumbra is broadened

Note that the FWHM field size is still correct, the blue and red curve meets at 50% height!

Volume effect of large ionization chambers

Broadening of measured penumbra

Broadening of the measured penumbra region at two different depths, depending upon detector type (0.125cm³ ion chamber and silicon diode).

Phys. Med. Biol. 54 (2009) 485-495: Manolopoulous et al.

PTW

Additional effects due to CAX normalization

The out-of-field dose and the penumbra dose will be overestimated

Other effects

- Alignment of beam and detector
- Irradiation is often composed of many small fields. To add these up the penumbras of fields must be determined very precisely
- Field size must not equal set of collimator value due to partial occlusion of focus by collimators and penumbra overlap
- Lateral electron equilibrium is often not given which can influence k_Q factors
- FFF-beams* and their spectrum is softer compared to conventional beams.
 This can influence k_Q factors

* Flattening Filter Free

MEPHYSTO 3.0

Deconvolution algorithm

PTW-DataAnalyze Process	
Process <u>All</u> PDD Profile <u>G</u> raphics <u>T</u> ools <u>?</u>	
Image: Continuous Image: Continuous	
Process Smooth Subtract Shift f(M) f(M)	 What do we need The best guess approximating the true profile (called "<i>best guess</i>" in the following slides) The <i>Kernel</i> of the detector The manufactured profile
Equidistant Equi	 A computer program In the end of the detector to an extremely thin
Deconvolve Symmetrize Shift Shift	 In theory, the Kernel is the response of the detector to an extremely thin field (only the size of a point) In practice, the Kernel is provided by Looe et al.
χ`(Halve	

MEPHYSTO 3.0

Deconvolution algorithm

MEPHYSTO 3.0

Deconvolution algorithm

Imac

farmer_chamber. farmer_chamber. farmer_chamber. farmer_chamber. farmer_waterproof. farmer_waterproof. rigid1. rigid2. rigid2.

semiflex1

semiflex2.

semiflex2.

Pinpoint1

Pinpoint2.

markus.

Pinpoint3D

MEPHYSTO 3.0

Deconvolution approach implemented in MEPHYSTO

©PTW 2013 | VIII. mezinárodní konferenci, Prague

Conclusion, Small Field Dosimetry

- If the detector dimension in the scanning direction is larger than roughly 1/4 of the field diameter, watch out for the volume effect
- Low-energy scattered radiation does not play a large role in small fields. Unshielded diodes can be used. In fields below roughly 7cm x 7cm, they are the best choice together with diamond detector and PinPoint chambers. Keep an eye on the field size limits
- If the volume effect is present:

The dose in the field center will be underestimated The signal at the field edge will be overestimated

CAX normalization combined with the volume effect in a small field leads to: The dose in the out-of-field region and the field edge will be overestimated PDDs at large depths will be overestimated The field (50% isodose) will appear slightly larger than it is

Application Guide																			
RADIATION THERAPY																			
When small things matter. Small Field Dosimetry Application Guide	Detector S	election Tree																	
	MAXIMUM field size (cm) required: Type of measurement:	n field size required 1 C	20 x 20 Absolute dose & Profiles &																
	Suitable detectors:	Suitable Suitable detector: Suitable Dode P Dode D Dode P Dode D Dode P Dode D Dode P Dode D Dode P Dode D Dode P Dode D Dode											Overview: Additional Selection Criteria Detectors Additional Selection Criteria						
	Recommended detectors:	Diode SRS (6 MV or less) Diode E Diode E (more than 6 MV) (more than 6 MV)	micration micration	Field Six min. cm x cm down to 1 x 1	max. cm x cm up to 10 x 10	Absolute D	2 cm x 2 cm 3 cm x 3 cm	a cm x 3 cm 4 cm × 4 cm	≥4 cm × 4 cm :	rofile Measuremen 10 cm > 10	tts PTW Detector (f) Diode E, unshielded	Diede E, unshielded Diede SRS, unshielded Diede P, shielded	Penuntora Precision ***** ****	Use-Or-Held Dose Precision ++1 ++1	++ ++ ++ ² ++	Uose Rate Independence	Energy Response Respon (MeV) · · · · · · · · · · · · · · · · · · ·	15e	
PĨſW	Remarks	As the keV energy response is of lesser relevance, the smallest detector, the unthielded diode, can be used.	The microLion chamber is an excellent com- promise between small size and good water equivalence for precise doos determination in larger fields. This also apples to the Diamond detector. As a natural resource, this detector is, however, more difficult to provide.	1x1 1x1 1x1	10 x 10 40 x 40 20 x 20	2 2 2	> > >	> > >	> > >	· - · ·	Diode SRS, unshielded Diode P, shielded DIAMOND Detector	Diamond Detector microLion Chamber PinPoint Chamber, 0.015 cm ⁴	•••	***	••••	**	···· ··· ···· ···	*	
				1×1 2×2 2×2 2×2	20 x 20 30 x 30 30 x 30 30 x 30	-	2 2 2 2	> > > >	2 2 2 2	· · · · · · · · · · · · · · · · · · ·	PinPoint Chamber 0.015 cm ³ PinPoint Chamber, 0.03 cm ³ PinPoint Chamber 30.	PirPoint Chamber, 0.63 cm ⁴ PirPoint Chamber 3D, 0.016 cm ³ Semillex Chamber, 0.125 cm ³	++ ++ *	++++ good ++ 0	**** ****	•••••*	·····* ···· ·····* ····	•	
				3 x 3 40 x 40 - <td< td=""><td>¹ for fields ≤ 10 cm × 10 ² only ≤ 6MV ³ this depends on the re above 180 Hz correction ⁴ can be corrected, k_Q an ⁴ can be corrected, k_Q an ⁷ can be corrected, k_Q an ⁷ can be corrected, k_Q an</td><td colspan="6">No fields 20 (2014) 100 m 104 (2004) 2004 (2014) 2004</td></td<>							¹ for fields ≤ 10 cm × 10 ² only ≤ 6MV ³ this depends on the re above 180 Hz correction ⁴ can be corrected, k _Q an ⁴ can be corrected, k _Q an ⁷ can be corrected, k _Q an ⁷ can be corrected, k _Q an	No fields 20 (2014) 100 m 104 (2004) 2004 (2014) 2004							

FFF Beam Technology

History

- A standard LINAC delivers a flat field profile using a coneshaped flattening filter (FF Beam)
- Radiation at central axis is harder as on the field edge
- Dose exposure in healthy tissue because of scattered radiation from the flattening filter
- Modern TPS can handle the dose calculation in flattened and flattening filter free beams (FFF Beam)
- A flattening filter absorbs a lot of radiation. Dose rate in FFF Beams is about 2-times higher than in FF Beams

FFF Beam Technology

Consideration of a FF LINAC

- Flattening filter: YES
- Dose rate: 6 Gy/min at 6 MV
- Dose per pulse: 0.2 mGy/pluse up to 0.6 mGy/pulse (field)
- Profile shape: flat
- Definition of field sizes: 50% Isodose
- Beam quality: 6 MV electrons generate a spectrum of 6 MeV in the target which is hardened by the flattening filter
- Profile shape will be changed in deeper water depth and the radiation in the field depends on the cone-shaped flattening filter

FFF Beam Technology

Consideration of a FFF LINAC

- Flattening filter: NO
- Dose rate: *Elekta Agility 14 Gy/min at 6MV FFF and 10MV FFF

*Elekta Agility 24 Gy/min at 10MV FFF

Varian TrueBeam up to 24 Gy/min at 10 MV FFF

Dose per pulse: *Elekta Agility 1 mGy/pluse at 10MV FFF

Varian TrueBeam 1.3 mGy/pulse at 10MV FFF

- Profile shape: cone-shaped from field size 7cm x 7cm (@ 6MV)
- Definition of field sizes: no international definition available
- Beam quality: no common convention. Some LINAC vendors increase electron energy to get "similar" radiation hardness
- Profile shape is expanded in deeper water depth and the radiation in the field is equally hardened

FFF Beam Technology

Type of LINAC

- Elekta Agility / VersaHD: FF Beams and FFF Beams
- Elekta Axesse: FF Beams and FFF Beams
- Varian TrueBeam: FF Beams and FFF Beams
- Siemens Artiste: FF Beams and FFF Beams
- Cyberknife: FFF Beams
- TomoTherapy: FFF Beams

Specific and designated characteristics

- Absolute dose measurements: Correction of saturation effect and no volume effect in the centre of the field sizes: Semiflex type 31010 and PinPoint type 31015
- Profile measurements: saturation effect does not play a role: Small field size detectors
- PDD curve measurements: saturation effect does not play a role: Small field size detectors
- Output factor measurements: saturation effect does not play a role: Small field size detectors
- Small field size detectors: Dosimetry diodes, Diamond detector, Pinpoint chamber and eventually Semiflex 0.125ccm chamber

Saturation effect for profiles and PDD curves

General issues...

- Saturation effect near the 100% dose (in the field) is negligible because of CAX normalization
- Saturation effect near the 0% dose (at the field edge) is negligible, since no Dose Per Pulse Dependency (DPPD) exists
- Maximum discrepancy of 50% dose is defined as follows: maximum DPPD / 4

FF profile and a detector with DPPD

- As you see you see nothing (nearly no discrepancy for 1%, 2% and 3% dose rate dependency)
- Maximum discrepancy of 50% dose with a maximum DPPD of 2% results in a 0.5% dose deviation

FFF profile and a detector with DPPD

- If you look precisely to the region 60%..80% of CAX-value a slightly discrepancy is given because of less steep dose gradient
- Maximum discrepancy of 50% dose with a maximum DPPD of 1%, 2%, 3%

FFF PDD and a detector with DPPD

- The deviation is still small but better visible in a PDD because the PDD is less steep at 50% dose
- Maximum deviation at 50% dose with a maximum DPPD of 1%, 2%, 3%

Suitable 2D Arrays

OCTAVIUS Detector 729

- Air vented ion chamber technology
- Specified range of up to 48 Gy/min
- 99% saturation at 0.73 mGy/pluse can end up leading to a 2% saturation deficiency at 10MV FFF

Suitable 2D Arrays

OCTAVIUS Detector 1000 SRS

- Liquid filled µLion technology
- Specified range of up to 12 Gy/min and usable up to 36 Gy/min
- ▶ 99% saturation with a DPPD of 1%:

Repetition frequency of 60 Hz and DPPD of 0.546 mGy/pulse Repetition frequency of 180 Hz and DPPD of 0.414 mGy/pulse Repetition frequency of 360 Hz and DPPD of 0.264 mGy/pulse

Saturation effect for liquid filled ion chambers can be assumed as a first estimate as linear with dose per pulse

Suitable 2D Arrays

STARCHECK and STARCHECK maxi

- Air vented ion chamber technology
- Usable up to 80 Gy/min (start-up behavior) and up to 50 Gy/min with continuous radiation
- 99% saturation at 1.22 mGy/pluse can end up leading to a 1% saturation deficiency at 10MV FFF

QUICKCHECK webline

FF Beam Technology

- Air vented ion chamber technology
- Automatic air density correction
- Docking station available
- Specified range of up to 10 Gy/min and up to 25 MV
- Measures Central Axis Dose (CAX), flatness of the field, wedge angle, symmetry, radiation quality and radiation time
- Gantry mount holder available
- Physicist's software tool WorklistGenerator and evaluation software QUICKCHECK

QUICKCHECK webline

FFF Beam Technology

- QUICKCHECK FFF Compensator X6
- QUICKCHECK FFF Compensator X10
- Air vented ion chambers
- Specified range of up to 25 Gy/min with the use of compensators
- Compensation in dependence on the position of the ion chamber in order to evaluate the "traditional" flatness of field

©PTW 2013 | VIII. mezinárodní konterenci, Prague

Summary

FFF Beam Technology

- FFF Beam: Twice the dose rate and dose per pulse (DPPD) or even more
- FFF Beam: Flatness, Field size etc. are not clearly defined
- PTW chambers and 2D-Arrays are well suited for FFF Beam technology
- Dose rate dependence in relative measurements is a lot less severe than one might think at first sight. Maximum deviation is only 1/4th of max dose rate dependence
- The same is true for cross calibrated measurements and output factor measurements. Deviations are even less
- There is a quick and easy way to estimate the saturation loss for ionization chambers and diamond detectors
- For absolute dose measurements use detector with known k_s or measure k_s

Thank you for your attention.

Any Questions?

©PTW 2013 | VIII. mezinárodní konferenci, Prague